Class CompiledGraph<N, State, Update, ConfigurableFieldType, InputType, OutputType>

The Pregel class is the core runtime engine of LangGraph, implementing a message-passing graph computation model inspired by Google's Pregel system. It provides the foundation for building reliable, controllable agent workflows that can evolve state over time.

Key features:

  • Message passing between nodes in discrete "supersteps"
  • Built-in persistence layer through checkpointers
  • First-class streaming support for values, updates, and events
  • Human-in-the-loop capabilities via interrupts
  • Support for parallel node execution within supersteps

The Pregel class is not intended to be instantiated directly by consumers. Instead, use the following higher-level APIs:

  • StateGraph: The main graph class for building agent workflows
  • Functional API: A declarative approach using tasks and entrypoints
    • A Pregel instance is returned by the entrypoint function
// Using StateGraph API
const graph = new StateGraph(annotation)
.addNode("nodeA", myNodeFunction)
.addEdge("nodeA", "nodeB")
.compile();

// The compiled graph is a Pregel instance
const result = await graph.invoke(input);
// Using Functional API
import { task, entrypoint } from "@langchain/langgraph";
import { MemorySaver } from "@langchain/langgraph-checkpoint";

// Define tasks that can be composed
const addOne = task("add", async (x: number) => x + 1);

// Create a workflow using the entrypoint function
const workflow = entrypoint({
name: "workflow",
checkpointer: new MemorySaver()
}, async (numbers: number[]) => {
// Tasks can be run in parallel
const results = await Promise.all(numbers.map(n => addOne(n)));
return results;
});

// The workflow is a Pregel instance
const result = await workflow.invoke([1, 2, 3]); // Returns [2, 3, 4]

Type Parameters

  • N extends string

    Mapping of node names to their PregelNode implementations

  • State = any

    Mapping of channel names to their BaseChannel or ManagedValueSpec implementations

  • Update = any

    Type of configurable fields that can be passed to the graph

  • ConfigurableFieldType extends Record<string, any> = Record<string, any>

    Type of input values accepted by the graph

  • InputType = any

    Type of output values produced by the graph

  • OutputType = any

Hierarchy (View Summary)

Constructors

Properties

autoValidate: boolean

Whether to automatically validate the graph structure when it is compiled. Defaults to true.

builder: Graph<N, State, Update>
channels: Record

The channels in the graph, mapping channel names to their BaseChannel or ManagedValueSpec instances

checkpointer?: false | BaseCheckpointSaver<number>

Optional checkpointer for persisting graph state. When provided, saves a checkpoint of the graph state at every superstep. When false or undefined, checkpointing is disabled, and the graph will not be able to save or restore state.

config?: LangGraphRunnableConfig<Record<string, any>>

The default configuration for graph execution, can be overridden on a per-invocation basis

debug: boolean

Whether to enable debug logging. Defaults to false.

inputChannels: string | N | (string | N)[]

The input channels for the graph. These channels receive the initial input when the graph is invoked. Can be a single channel key or an array of channel keys.

interruptAfter?: "*" | ("__start__" | N)[]

Optional array of node names or "all" to interrupt after executing these nodes. Used for implementing human-in-the-loop workflows.

interruptBefore?: "*" | ("__start__" | N)[]

Optional array of node names or "all" to interrupt before executing these nodes. Used for implementing human-in-the-loop workflows.

lc_kwargs: SerializedFields
lc_runnable: boolean
lc_serializable: boolean
name?: string
nodes: Record

The nodes in the graph, mapping node names to their PregelNode instances

NodeType: N
outputChannels: string | N | (string | N)[]

The output channels for the graph. These channels contain the final output when the graph completes. Can be a single channel key or an array of channel keys.

retryPolicy?: RetryPolicy

Optional retry policy for handling failures in node execution

RunInput: State
RunOutput: Update
stepTimeout?: number

Optional timeout in milliseconds for the execution of each superstep

store?: BaseStore

Optional long-term memory store for the graph, allows for persistance & retrieval of data across threads

streamChannels?: string | N | (string | N)[]

Optional channels to stream. If not specified, all channels will be streamed. Can be a single channel key or an array of channel keys.

streamMode: StreamMode[]

The streaming modes enabled for this graph. Defaults to ["values"]. Supported modes:

  • "values": Streams the full state after each step
  • "updates": Streams state updates after each step
  • "messages": Streams messages from within nodes
  • "custom": Streams custom events from within nodes
  • "debug": Streams events related to the execution of the graph - useful for tracing & debugging graph execution

Accessors

  • get lc_aliases(): undefined | { [key: string]: string }

    A map of aliases for constructor args. Keys are the attribute names, e.g. "foo". Values are the alias that will replace the key in serialization. This is used to eg. make argument names match Python.

    Returns undefined | { [key: string]: string }

  • get lc_attributes(): undefined | SerializedFields

    A map of additional attributes to merge with constructor args. Keys are the attribute names, e.g. "foo". Values are the attribute values, which will be serialized. These attributes need to be accepted by the constructor as arguments.

    Returns undefined | SerializedFields

  • get lc_id(): string[]

    The final serialized identifier for the module.

    Returns string[]

  • get lc_secrets(): undefined | { [key: string]: string }

    A map of secrets, which will be omitted from serialization. Keys are paths to the secret in constructor args, e.g. "foo.bar.baz". Values are the secret ids, which will be used when deserializing.

    Returns undefined | { [key: string]: string }

  • get lc_serializable_keys(): undefined | string[]

    A manual list of keys that should be serialized. If not overridden, all fields passed into the constructor will be serialized.

    Returns undefined | string[]

  • get streamChannelsAsIs(): keyof Channels | (keyof Channels)[]

    Gets the channels to stream in their original format. If streamChannels is specified, returns it as-is (either single key or array). Otherwise, returns all channels in the graph as an array.

    Returns keyof Channels | (keyof Channels)[]

    Channel keys to stream, either as a single key or array

  • get streamChannelsList(): (keyof Channels)[]

    Gets a list of all channels that should be streamed. If streamChannels is specified, returns those channels. Otherwise, returns all channels in the graph.

    Returns (keyof Channels)[]

    Array of channel keys to stream

Methods

  • Internal method that handles batching and configuration for a runnable It takes a function, input values, and optional configuration, and returns a promise that resolves to the output values.

    Type Parameters

    • T

    Parameters

    • func: (
          inputs: T[],
          options?: Partial<
              PregelOptions<
                  Record<"__start__" | N, PregelNode<State, Update>>,
                  Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                  ConfigurableFieldType & Record<string, any>,
              >,
          >[],
          runManagers?: (undefined | CallbackManagerForChainRun)[],
          batchOptions?: RunnableBatchOptions,
      ) => Promise<(Error | OutputType)[]>

      The function to be executed for each input value.

    • inputs: T[]
    • Optionaloptions:
          | Partial<
              PregelOptions<
                  Record<"__start__" | N, PregelNode<State, Update>>,
                  Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                  ConfigurableFieldType & Record<string, any>,
              > & { runType?: string },
          >
          | Partial<
              PregelOptions<
                  Record<"__start__" | N, PregelNode<State, Update>>,
                  Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                  ConfigurableFieldType & Record<string, any>,
              > & { runType?: string },
          >[]
    • OptionalbatchOptions: RunnableBatchOptions

    Returns Promise<(Error | OutputType)[]>

    A promise that resolves to the output values.

  • Type Parameters

    • T

    Parameters

    • func:
          | (input: T) => Promise<OutputType>
          | (
              input: T,
              config?: Partial<
                  PregelOptions<
                      Record<"__start__" | N, PregelNode<State, Update>>,
                      Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                      ConfigurableFieldType & Record<string, any>,
                  >,
              >,
              runManager?: CallbackManagerForChainRun,
          ) => Promise<OutputType>
    • input: T
    • Optionaloptions: Partial<
          PregelOptions<
              Record<"__start__" | N, PregelNode<State, Update>>,
              Record<string | N, BaseChannel<unknown, unknown, unknown>>,
              ConfigurableFieldType & Record<string, any>,
          >,
      > & { runType?: string }

    Returns Promise<OutputType>

  • Type Parameters

    Parameters

    • options: Partial<O> | Partial<O>[]
    • Optionallength: number

    Returns Partial<O>[]

  • Parameters

    Returns [
        RunnableConfig<Record<string, any>>,
        Omit<
            Partial<
                PregelOptions<
                    Record<"__start__" | N, PregelNode<State, Update>>,
                    Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                    ConfigurableFieldType & Record<string, any>,
                >,
            >,
            keyof RunnableConfig<Record<string, any>>,
        >,
    ]

  • Parameters

    Returns AsyncGenerator<RunLogPatch>

  • Helper method to transform an Iterator of Input values into an Iterator of Output values, with callbacks. Use this to implement stream() or transform() in Runnable subclasses.

    Type Parameters

    • I
    • O

    Parameters

    • inputGenerator: AsyncGenerator<I>
    • transformer: (
          generator: AsyncGenerator<I>,
          runManager?: CallbackManagerForChainRun,
          options?: Partial<
              PregelOptions<
                  Record<"__start__" | N, PregelNode<State, Update>>,
                  Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                  ConfigurableFieldType & Record<string, any>,
              >,
          >,
      ) => AsyncGenerator<O>
    • Optionaloptions: Partial<
          PregelOptions<
              Record<"__start__" | N, PregelNode<State, Update>>,
              Record<string | N, BaseChannel<unknown, unknown, unknown>>,
              ConfigurableFieldType & Record<string, any>,
          >,
      > & { runType?: string }

    Returns AsyncGenerator<O>

  • Assigns new fields to the dict output of this runnable. Returns a new runnable.

    Parameters

    • mapping: RunnableMapLike<Record<string, unknown>, Record<string, unknown>>

    Returns Runnable

  • Convert a runnable to a tool. Return a new instance of RunnableToolLike which contains the runnable, name, description and schema.

    Type Parameters

    Parameters

    • fields: { description?: string; name?: string; schema: ZodType<T> }
      • Optionaldescription?: string

        The description of the tool. Falls back to the description on the Zod schema if not provided, or undefined if neither are provided.

      • Optionalname?: string

        The name of the tool. If not provided, it will default to the name of the runnable.

      • schema: ZodType<T>

        The Zod schema for the input of the tool. Infers the Zod type from the input type of the runnable.

    Returns RunnableToolLike<ZodType<ToolCall | T, ZodTypeDef, ToolCall | T>, OutputType>

    An instance of RunnableToolLike which is a runnable that can be used as a tool.

  • Parameters

    • start: "__start__" | N
    • name: string
    • branch: Branch<State, N>

    Returns void

  • Parameters

    • start: "__start__" | N
    • end: "__end__" | N

    Returns void

  • Parameters

    Returns void

  • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

    Parameters

    • inputs: (null | InputType | Command<unknown>)[]

      Array of inputs to each batch call.

    • Optionaloptions:
          | Partial<
              PregelOptions<
                  Record<"__start__" | N, PregelNode<State, Update>>,
                  Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                  ConfigurableFieldType & Record<string, any>,
              >,
          >
          | Partial<
              PregelOptions<
                  Record<"__start__" | N, PregelNode<State, Update>>,
                  Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                  ConfigurableFieldType & Record<string, any>,
              >,
          >[]

      Either a single call options object to apply to each batch call or an array for each call.

    • OptionalbatchOptions: RunnableBatchOptions & { returnExceptions?: false }
      • returnExceptions

        Whether to return errors rather than throwing on the first one

      • OptionalreturnExceptions?: false

        Whether to return errors rather than throwing on the first one

    Returns Promise<OutputType[]>

    An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

  • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

    Parameters

    • inputs: (null | InputType | Command<unknown>)[]

      Array of inputs to each batch call.

    • Optionaloptions:
          | Partial<
              PregelOptions<
                  Record<"__start__" | N, PregelNode<State, Update>>,
                  Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                  ConfigurableFieldType & Record<string, any>,
              >,
          >
          | Partial<
              PregelOptions<
                  Record<"__start__" | N, PregelNode<State, Update>>,
                  Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                  ConfigurableFieldType & Record<string, any>,
              >,
          >[]

      Either a single call options object to apply to each batch call or an array for each call.

    • OptionalbatchOptions: RunnableBatchOptions & { returnExceptions: true }
      • returnExceptions

        Whether to return errors rather than throwing on the first one

      • returnExceptions: true

        Whether to return errors rather than throwing on the first one

    Returns Promise<(Error | OutputType)[]>

    An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

  • Default implementation of batch, which calls invoke N times. Subclasses should override this method if they can batch more efficiently.

    Parameters

    • inputs: (null | InputType | Command<unknown>)[]

      Array of inputs to each batch call.

    • Optionaloptions:
          | Partial<
              PregelOptions<
                  Record<"__start__" | N, PregelNode<State, Update>>,
                  Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                  ConfigurableFieldType & Record<string, any>,
              >,
          >
          | Partial<
              PregelOptions<
                  Record<"__start__" | N, PregelNode<State, Update>>,
                  Record<string | N, BaseChannel<unknown, unknown, unknown>>,
                  ConfigurableFieldType & Record<string, any>,
              >,
          >[]

      Either a single call options object to apply to each batch call or an array for each call.

    • OptionalbatchOptions: RunnableBatchOptions
      • returnExceptions

        Whether to return errors rather than throwing on the first one

    Returns Promise<(Error | OutputType)[]>

    An array of RunOutputs, or mixed RunOutputs and errors if batchOptions.returnExceptions is set

  • Returns a drawable representation of the computation graph.

    Parameters

    • Optionalconfig: RunnableConfig<Record<string, any>> & { xray?: number | boolean }

    Returns Graph

    Use getGraphAsync instead. The async method will be the default in the next minor core release.

  • Returns a drawable representation of the computation graph.

    Parameters

    • Optionalconfig: RunnableConfig<Record<string, any>> & { xray?: number | boolean }

    Returns Promise<Graph>

  • Parameters

    • Optionalsuffix: string

    Returns string

  • Gets the current state of the graph. Requires a checkpointer to be configured.

    Parameters

    • config: RunnableConfig

      Configuration for retrieving the state

    • Optionaloptions: GetStateOptions

      Additional options

    Returns Promise<StateSnapshot>

    A snapshot of the current graph state

    If no checkpointer is configured

  • Gets the history of graph states. Requires a checkpointer to be configured. Useful for:

    • Debugging execution history
    • Implementing time travel
    • Analyzing graph behavior

    Parameters

    • config: RunnableConfig

      Configuration for retrieving the history

    • Optionaloptions: CheckpointListOptions

      Options for filtering the history

    Returns AsyncIterableIterator<StateSnapshot>

    An async iterator of state snapshots

    If no checkpointer is configured

  • Gets all subgraphs within this graph. A subgraph is a Pregel instance that is nested within a node of this graph.

    Parameters

    • Optionalnamespace: string

      Optional namespace to filter subgraphs

    • Optionalrecurse: boolean

      Whether to recursively get subgraphs of subgraphs

    Returns Generator<[string, Pregel<any, any, StrRecord<string, any>, any, any>]>

    Generator yielding tuples of [name, subgraph]

    Use getSubgraphsAsync instead. The async method will become the default in the next minor release.

  • Gets all subgraphs within this graph asynchronously. A subgraph is a Pregel instance that is nested within a node of this graph.

    Parameters

    • Optionalnamespace: string

      Optional namespace to filter subgraphs

    • Optionalrecurse: boolean

      Whether to recursively get subgraphs of subgraphs

    Returns AsyncGenerator<[string, Pregel<any, any, StrRecord<string, any>, any, any>]>

    AsyncGenerator yielding tuples of [name, subgraph]

  • Pick keys from the dict output of this runnable. Returns a new runnable.

    Parameters

    • keys: string | string[]

    Returns Runnable

  • Create a new runnable sequence that runs each individual runnable in series, piping the output of one runnable into another runnable or runnable-like.

    Type Parameters

    • NewRunOutput

    Parameters

    • coerceable: RunnableLike<OutputType, NewRunOutput>

      A runnable, function, or object whose values are functions or runnables.

    Returns Runnable<null | InputType | Command<unknown>, Exclude<NewRunOutput, Error>>

    A new runnable sequence.

  • Streams the execution of the graph, emitting state updates as they occur. This is the primary method for observing graph execution in real-time.

    Stream modes:

    • "values": Emits complete state after each step
    • "updates": Emits only state changes after each step
    • "debug": Emits detailed debug information
    • "messages": Emits messages from within nodes

    For more details, see the Streaming how-to guides.

    Parameters

    Returns Promise<IterableReadableStream<any>>

    An async iterable stream of graph state updates

  • Generate a stream of events emitted by the internal steps of the runnable.

    Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

    A StreamEvent is a dictionary with the following schema:

    • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
    • name: string - The name of the runnable that generated the event.
    • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
    • tags: string[] - The tags of the runnable that generated the event.
    • metadata: Record<string, any> - The metadata of the runnable that generated the event.
    • data: Record<string, any>

    Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

    ATTENTION This reference table is for the V2 version of the schema.

    +----------------------+-----------------------------+------------------------------------------+
    | event                | input                       | output/chunk                             |
    +======================+=============================+==========================================+
    | on_chat_model_start  | {"messages": BaseMessage[]} |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chat_model_stream |                             | AIMessageChunk("hello")                  |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chat_model_end    | {"messages": BaseMessage[]} | AIMessageChunk("hello world")            |
    +----------------------+-----------------------------+------------------------------------------+
    | on_llm_start         | {'input': 'hello'}          |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_llm_stream        |                             | 'Hello'                                  |
    +----------------------+-----------------------------+------------------------------------------+
    | on_llm_end           | 'Hello human!'              |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chain_start       |                             |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chain_stream      |                             | "hello world!"                           |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chain_end         | [Document(...)]             | "hello world!, goodbye world!"           |
    +----------------------+-----------------------------+------------------------------------------+
    | on_tool_start        | {"x": 1, "y": "2"}          |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_tool_end          |                             | {"x": 1, "y": "2"}                       |
    +----------------------+-----------------------------+------------------------------------------+
    | on_retriever_start   | {"query": "hello"}          |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_retriever_end     | {"query": "hello"}          | [Document(...), ..]                      |
    +----------------------+-----------------------------+------------------------------------------+
    | on_prompt_start      | {"question": "hello"}       |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_prompt_end        | {"question": "hello"}       | ChatPromptValue(messages: BaseMessage[]) |
    +----------------------+-----------------------------+------------------------------------------+
    

    The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.

    In addition to the standard events above, users can also dispatch custom events.

    Custom events will be only be surfaced with in the v2 version of the API!

    A custom event has following format:

    +-----------+------+------------------------------------------------------------+
    | Attribute | Type | Description                                                |
    +===========+======+============================================================+
    | name      | str  | A user defined name for the event.                         |
    +-----------+------+------------------------------------------------------------+
    | data      | Any  | The data associated with the event. This can be anything.  |
    +-----------+------+------------------------------------------------------------+
    

    Here's an example:

    import { RunnableLambda } from "@langchain/core/runnables";
    import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
    // Use this import for web environments that don't support "async_hooks"
    // and manually pass config to child runs.
    // import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";

    const slowThing = RunnableLambda.from(async (someInput: string) => {
    // Placeholder for some slow operation
    await new Promise((resolve) => setTimeout(resolve, 100));
    await dispatchCustomEvent("progress_event", {
    message: "Finished step 1 of 2",
    });
    await new Promise((resolve) => setTimeout(resolve, 100));
    return "Done";
    });

    const eventStream = await slowThing.streamEvents("hello world", {
    version: "v2",
    });

    for await (const event of eventStream) {
    if (event.event === "on_custom_event") {
    console.log(event);
    }
    }

    Parameters

    Returns IterableReadableStream<StreamEvent>

  • Generate a stream of events emitted by the internal steps of the runnable.

    Use to create an iterator over StreamEvents that provide real-time information about the progress of the runnable, including StreamEvents from intermediate results.

    A StreamEvent is a dictionary with the following schema:

    • event: string - Event names are of the format: on_[runnable_type]_(start|stream|end).
    • name: string - The name of the runnable that generated the event.
    • run_id: string - Randomly generated ID associated with the given execution of the runnable that emitted the event. A child runnable that gets invoked as part of the execution of a parent runnable is assigned its own unique ID.
    • tags: string[] - The tags of the runnable that generated the event.
    • metadata: Record<string, any> - The metadata of the runnable that generated the event.
    • data: Record<string, any>

    Below is a table that illustrates some events that might be emitted by various chains. Metadata fields have been omitted from the table for brevity. Chain definitions have been included after the table.

    ATTENTION This reference table is for the V2 version of the schema.

    +----------------------+-----------------------------+------------------------------------------+
    | event                | input                       | output/chunk                             |
    +======================+=============================+==========================================+
    | on_chat_model_start  | {"messages": BaseMessage[]} |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chat_model_stream |                             | AIMessageChunk("hello")                  |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chat_model_end    | {"messages": BaseMessage[]} | AIMessageChunk("hello world")            |
    +----------------------+-----------------------------+------------------------------------------+
    | on_llm_start         | {'input': 'hello'}          |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_llm_stream        |                             | 'Hello'                                  |
    +----------------------+-----------------------------+------------------------------------------+
    | on_llm_end           | 'Hello human!'              |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chain_start       |                             |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chain_stream      |                             | "hello world!"                           |
    +----------------------+-----------------------------+------------------------------------------+
    | on_chain_end         | [Document(...)]             | "hello world!, goodbye world!"           |
    +----------------------+-----------------------------+------------------------------------------+
    | on_tool_start        | {"x": 1, "y": "2"}          |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_tool_end          |                             | {"x": 1, "y": "2"}                       |
    +----------------------+-----------------------------+------------------------------------------+
    | on_retriever_start   | {"query": "hello"}          |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_retriever_end     | {"query": "hello"}          | [Document(...), ..]                      |
    +----------------------+-----------------------------+------------------------------------------+
    | on_prompt_start      | {"question": "hello"}       |                                          |
    +----------------------+-----------------------------+------------------------------------------+
    | on_prompt_end        | {"question": "hello"}       | ChatPromptValue(messages: BaseMessage[]) |
    +----------------------+-----------------------------+------------------------------------------+
    

    The "on_chain_*" events are the default for Runnables that don't fit one of the above categories.

    In addition to the standard events above, users can also dispatch custom events.

    Custom events will be only be surfaced with in the v2 version of the API!

    A custom event has following format:

    +-----------+------+------------------------------------------------------------+
    | Attribute | Type | Description                                                |
    +===========+======+============================================================+
    | name      | str  | A user defined name for the event.                         |
    +-----------+------+------------------------------------------------------------+
    | data      | Any  | The data associated with the event. This can be anything.  |
    +-----------+------+------------------------------------------------------------+
    

    Here's an example:

    import { RunnableLambda } from "@langchain/core/runnables";
    import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch";
    // Use this import for web environments that don't support "async_hooks"
    // and manually pass config to child runs.
    // import { dispatchCustomEvent } from "@langchain/core/callbacks/dispatch/web";

    const slowThing = RunnableLambda.from(async (someInput: string) => {
    // Placeholder for some slow operation
    await new Promise((resolve) => setTimeout(resolve, 100));
    await dispatchCustomEvent("progress_event", {
    message: "Finished step 1 of 2",
    });
    await new Promise((resolve) => setTimeout(resolve, 100));
    return "Done";
    });

    const eventStream = await slowThing.streamEvents("hello world", {
    version: "v2",
    });

    for await (const event of eventStream) {
    if (event.event === "on_custom_event") {
    console.log(event);
    }
    }

    Parameters

    • input: null | InputType | Command<unknown>
    • options: Partial<
          PregelOptions<
              Record<"__start__" | N, PregelNode<State, Update>>,
              Record<string | N, BaseChannel<unknown, unknown, unknown>>,
              ConfigurableFieldType & Record<string, any>,
          >,
      > & { encoding: "text/event-stream"; version: "v1" | "v2" }
    • OptionalstreamOptions: Omit<EventStreamCallbackHandlerInput, "autoClose">

    Returns IterableReadableStream<Uint8Array>

  • Stream all output from a runnable, as reported to the callback system. This includes all inner runs of LLMs, Retrievers, Tools, etc. Output is streamed as Log objects, which include a list of jsonpatch ops that describe how the state of the run has changed in each step, and the final state of the run. The jsonpatch ops can be applied in order to construct state.

    Parameters

    Returns AsyncGenerator<RunLogPatch>

  • Returns Serialized

  • Returns SerializedNotImplemented

  • Default implementation of transform, which buffers input and then calls stream. Subclasses should override this method if they can start producing output while input is still being generated.

    Parameters

    Returns AsyncGenerator<OutputType>

  • Updates the state of the graph with new values. Requires a checkpointer to be configured.

    This method can be used for:

    • Implementing human-in-the-loop workflows
    • Modifying graph state during breakpoints
    • Integrating external inputs into the graph

    Parameters

    • inputConfig: LangGraphRunnableConfig

      Configuration for the update

    • values: unknown

      The values to update the state with

    • OptionalasNode: string | N

      Optional node name to attribute the update to

    Returns Promise<RunnableConfig<Record<string, any>>>

    Updated configuration

    If no checkpointer is configured

    If the update cannot be attributed to a node

  • Validates the graph structure to ensure it is well-formed. Checks for:

    • No orphaned nodes
    • Valid input/output channel configurations
    • Valid interrupt configurations

    Returns this

    this - The Pregel instance for method chaining

    If the graph structure is invalid

  • Creates a new instance of the Pregel graph with updated configuration. This method follows the immutable pattern - instead of modifying the current instance, it returns a new instance with the merged configuration.

    Parameters

    • config: RunnableConfig

      The configuration to merge with the current configuration

    Returns CompiledGraph<N, State, Update, ConfigurableFieldType, InputType, OutputType>

    A new Pregel instance with the merged configuration

    // Create a new instance with debug enabled
    const debugGraph = graph.withConfig({ debug: true });

    // Create a new instance with a specific thread ID
    const threadGraph = graph.withConfig({
    configurable: { thread_id: "123" }
    });
  • Create a new runnable from the current one that will try invoking other passed fallback runnables if the initial invocation fails.

    Parameters

    • fields:
          | {
              fallbacks: Runnable<
                  null
                  | InputType
                  | Command<unknown>,
                  OutputType,
                  RunnableConfig<Record<string, any>>,
              >[];
          }
          | Runnable<
              null
              | InputType
              | Command<unknown>,
              OutputType,
              RunnableConfig<Record<string, any>>,
          >[]
      • {
            fallbacks: Runnable<
                null
                | InputType
                | Command<unknown>,
                OutputType,
                RunnableConfig<Record<string, any>>,
            >[];
        }
        • fallbacks: Runnable<
              null
              | InputType
              | Command<unknown>,
              OutputType,
              RunnableConfig<Record<string, any>>,
          >[]

          Other runnables to call if the runnable errors.

      • Runnable<
            null
            | InputType
            | Command<unknown>,
            OutputType,
            RunnableConfig<Record<string, any>>,
        >[]

    Returns RunnableWithFallbacks<null | InputType | Command<unknown>, OutputType>

    A new RunnableWithFallbacks.

  • Bind lifecycle listeners to a Runnable, returning a new Runnable. The Run object contains information about the run, including its id, type, input, output, error, startTime, endTime, and any tags or metadata added to the run.

    Parameters

    • params: {
          onEnd?: (
              run: Run,
              config?: RunnableConfig<Record<string, any>>,
          ) => void | Promise<void>;
          onError?: (
              run: Run,
              config?: RunnableConfig<Record<string, any>>,
          ) => void | Promise<void>;
          onStart?: (
              run: Run,
              config?: RunnableConfig<Record<string, any>>,
          ) => void | Promise<void>;
      }

      The object containing the callback functions.

      • OptionalonEnd?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

        Called after the runnable finishes running, with the Run object.

      • OptionalonError?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

        Called if the runnable throws an error, with the Run object.

      • OptionalonStart?: (run: Run, config?: RunnableConfig<Record<string, any>>) => void | Promise<void>

        Called before the runnable starts running, with the Run object.

    Returns Runnable<
        null
        | InputType
        | Command<unknown>,
        OutputType,
        PregelOptions<
            Record<"__start__" | N, PregelNode<State, Update>>,
            Record<string | N, BaseChannel<unknown, unknown, unknown>>,
            ConfigurableFieldType & Record<string, any>,
        >,
    >

  • Add retry logic to an existing runnable.

    Parameters

    • Optionalfields: {
          onFailedAttempt?: RunnableRetryFailedAttemptHandler;
          stopAfterAttempt?: number;
      }

    Returns RunnableRetry<
        null
        | InputType
        | Command<unknown>,
        OutputType,
        PregelOptions<
            Record<"__start__" | N, PregelNode<State, Update>>,
            Record<string | N, BaseChannel<unknown, unknown, unknown>>,
            ConfigurableFieldType & Record<string, any>,
        >,
    >

    A new RunnableRetry that, when invoked, will retry according to the parameters.

  • Parameters

    • thing: any

    Returns thing is Runnable<any, any, RunnableConfig<Record<string, any>>>