Context¶
Agents often require more than a list of messages to function effectively. They need context.
Context includes any data outside the message list that can shape agent behavior or tool execution. This can be:
- Information passed at runtime, like a
user_id
or API credentials. - Internal state updated during a multi-step reasoning process.
- Persistent memory or facts from previous interactions.
LangGraph provides three primary ways to supply context:
Type | Description | Mutable? | Lifetime |
---|---|---|---|
Config | data passed at the start of a run | ❌ | per run |
State | dynamic data that can change during execution | ✅ | per run or conversation |
Long-term Memory (Store) | data that can be shared between conversations | ✅ | across conversations |
You can use context to:
- Adjust the system prompt the model sees
- Feed tools with necessary inputs
- Track facts during an ongoing conversation
Providing Runtime Context¶
Use this when you need to inject data into an agent at runtime.
Config (static context)¶
Config is for immutable data like user metadata or API keys. Use when you have values that don't change mid-run.
Specify configuration using a key called "configurable" which is reserved for this purpose:
State (mutable context)¶
State acts as short-term memory during a run. It holds dynamic data that can evolve during execution, such as values derived from tools or LLM outputs.
const CustomState = Annotation.Root({
...MessagesAnnotation.spec,
userName: Annotation<string>,
});
const agent = createReactAgent({
// Other agent parameters...
stateSchema: CustomState,
})
await agent.invoke(
{ messages: "hi!", userName: "Jane" }
)
Turning on memory
Please see the memory guide for more details on how to enable memory. This is a powerful feature that allows you to persist the agent's state across multiple invocations. Otherwise, the state is scoped only to a single agent run.
Long-Term Memory (cross-conversation context)¶
For context that spans across conversations or sessions, LangGraph allows access to long-term memory via a store
. This can be used to read or update persistent facts (e.g., user profiles, preferences, prior interactions). For more, see the Memory guide.
Customizing Prompts with Context¶
Prompts define how the agent behaves. To incorporate runtime context, you can dynamically generate prompts based on the agent's state or config.
Common use cases:
- Personalization
- Role or goal customization
- Conditional behavior (e.g., user is admin)
import { BaseMessageLike } from "@langchain/core/messages";
import { RunnableConfig } from "@langchain/core/runnables";
import { initChatModel } from "langchain/chat_models/universal";
import { MessagesAnnotation } from "@langchain/langgraph";
import { createReactAgent } from "@langchain/langgraph/prebuilt";
const prompt = (
state: typeof MessagesAnnotation.State,
config: RunnableConfig
): BaseMessageLike[] => {
const userName = config.configurable?.userName;
const systemMsg = `You are a helpful assistant. Address the user as ${userName}.`;
return [{ role: "system", content: systemMsg }, ...state.messages];
};
const llm = await initChatModel("anthropic:claude-3-7-sonnet-latest");
const agent = createReactAgent({
llm,
tools: [getWeather],
prompt
});
await agent.invoke(
{ messages: "hi!" },
{ configurable: { userName: "John Smith" } }
);
import { BaseMessageLike } from "@langchain/core/messages";
import { RunnableConfig } from "@langchain/core/runnables";
import { initChatModel } from "langchain/chat_models/universal";
import { Annotation, MessagesAnnotation } from "@langchain/langgraph";
import { createReactAgent } from "@langchain/langgraph/prebuilt";
const CustomState = Annotation.Root({
...MessagesAnnotation.spec,
userName: Annotation<string>,
});
const prompt = (
state: typeof CustomState.State,
): BaseMessageLike[] => {
const userName = state.userName;
const systemMsg = `You are a helpful assistant. Address the user as ${userName}.`;
return [{ role: "system", content: systemMsg }, ...state.messages];
};
const llm = await initChatModel("anthropic:claude-3-7-sonnet-latest");
const agent = createReactAgent({
llm,
tools: [getWeather],
prompt,
stateSchema: CustomState,
});
await agent.invoke(
{ messages: "hi!", userName: "John Smith" },
);
Tools¶
Tools can access context through:
- Use
RunnableConfig
for config access - Use
getCurrentTaskInput()
for agent state
import { RunnableConfig } from "@langchain/core/runnables";
import { initChatModel } from "langchain/chat_models/universal";
import { createReactAgent } from "@langchain/langgraph/prebuilt";
import { tool } from "@langchain/core/tools";
import { z } from "zod";
const getUserInfo = tool(
async (input: Record<string, any>, config: RunnableConfig) => {
const userId = config.configurable?.userId;
return userId === "user_123" ? "User is John Smith" : "Unknown user";
},
{
name: "get_user_info",
description: "Look up user info.",
schema: z.object({}),
}
);
const llm = await initChatModel("anthropic:claude-3-7-sonnet-latest");
const agent = createReactAgent({
llm,
tools: [getUserInfo],
});
await agent.invoke(
{ messages: "look up user information" },
{ configurable: { userId: "user_123" } }
);
import { initChatModel } from "langchain/chat_models/universal";
import { createReactAgent } from "@langchain/langgraph/prebuilt";
import { Annotation, MessagesAnnotation, getCurrentTaskInput } from "@langchain/langgraph";
import { tool } from "@langchain/core/tools";
import { z } from "zod";
const CustomState = Annotation.Root({
...MessagesAnnotation.spec,
userId: Annotation<string>(),
});
const getUserInfo = tool(
async (
input: Record<string, any>,
) => {
const state = getCurrentTaskInput() as typeof CustomState.State;
const userId = state.userId;
return userId === "user_123" ? "User is John Smith" : "Unknown user";
},
{
name: "get_user_info",
description: "Look up user info.",
schema: z.object({})
}
);
const llm = await initChatModel("anthropic:claude-3-7-sonnet-latest");
const agent = createReactAgent({
llm,
tools: [getUserInfo],
stateSchema: CustomState,
});
await agent.invoke(
{ messages: "look up user information", userId: "user_123" }
);
Update context from tools¶
Tools can modify the agent's state during execution. This is useful for persisting intermediate results or making information accessible to subsequent tools or prompts.
import { Annotation, MessagesAnnotation, LangGraphRunnableConfig, Command } from "@langchain/langgraph";
import { tool } from "@langchain/core/tools";
import { z } from "zod";
import { ToolMessage } from "@langchain/core/messages";
import { initChatModel } from "langchain/chat_models/universal";
import { createReactAgent } from "@langchain/langgraph/prebuilt";
const CustomState = Annotation.Root({
...MessagesAnnotation.spec,
userName: Annotation<string>(), // Will be updated by the tool
});
const getUserInfo = tool(
async (
_input: Record<string, never>,
config: LangGraphRunnableConfig
): Promise<Command> => {
const userId = config.configurable?.userId;
if (!userId) {
throw new Error("Please provide a user id in config.configurable");
}
const toolCallId = config.toolCall?.id;
const name = userId === "user_123" ? "John Smith" : "Unknown user";
// Return command to update state
return new Command({
update: {
userName: name,
// Update the message history
messages: [
new ToolMessage({
content: "Successfully looked up user information",
tool_call_id: toolCallId,
}),
],
},
});
},
{
name: "get_user_info",
description: "Look up user information.",
schema: z.object({}),
}
);
const llm = await initChatModel("anthropic:claude-3-7-sonnet-latest");
const agent = createReactAgent({
llm,
tools: [getUserInfo],
stateSchema: CustomState,
});
await agent.invoke(
{ messages: "look up user information" },
{ configurable: { userId: "user_123" } }
);
For more details, see how to update state from tools.